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Explainable Artificial
Intelligence (XAl)

Dr. Matt Turek
AL DoD and non-DoD
System Applications
Transportation
herp ) | explarthat sttt com mﬁw
« We are entering a new Medicine
age of Al applications
* Machine learning is the Finance
core technology
« Machine learning models Legal
are opaque, non-
intuitive, and difficult for Military
people to understand

Figure 1. The Need for Explainable Al
https://www.darpa.mil/program/explainable-artificial-intelligence

+ Why did you do that?

+ Why not something else?

* When do you succeed?

* When do you fail?

* When can I trust you?

* How do I correct an error?



Beyond accuracy (model)

Only achieving high accuracy is not enough, but we need to answer
e Where is the errors/bugs in my models?

e \Why are my models behaving the way they are?
e Why do my model fail on this example?

e How can | improve my models?
e Why should | trust my models?



Beyond accuracy (model & data)

Only achieving high accuracy is not enough, but we need to answer

Where is the errors/bugs in my models?

Where is the errors/bugs in my data?

Why are my models behaving the way they are?

Why do my model fail on this example?

Can | locate particular training examples that cause the model behavior?
How can | improve my models?

Why should | trust my models?



long short

Interpretability and Explainability .

sKips

They are often used interchangeably follow_up

skips reads with
probability 0.82

But still subtle difference between the two AR

e \We consider a model to be “interpretable” if the model itself can provide
humanly understandable interpretations of its predictions. Note that such a
model is no longer a black box to some extent. For example, a decision tree
model is an “interpretable” one.

e An “explainable” model implies that the model is still a black box whose
predictions could potentially be understood by post hoc explanation
techniques.
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Analysis on BERT - Attention

What Does BERT Look At? An Analysis of BERT’s Attention (Clark et al., 2019)
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Figure 1: Examples of heads exhibiting the patterns discussed in Section 3. The darkness of a line indicates the
strength of the attention weight (some attention weights are so low they are invisible).


https://arxiv.org/abs/1906.04341

Robustness Analysis for interpretation and explanation

Understanding model robustness can give many insights in interpretation and
explanation

e When will the model fail?

e How can we test the behavior of the model?
e |s the model right for the right reason?
(



Analysis on BERT

BERT Rediscovers the Classical NLP Pipeline (Tenney et al., 2019)

Quantify where linguistic
information is captured within the
network.

Find that the model represents
the steps of the traditional NLP
pipeline in an interpretable and
localizable way, and that the
regions responsible for each step
appear in the expected
sequence: POS tagging, parsing,
NER, semantic roles, then
coreference

Increasing
abstractness
of linguistic
properties

Increasing depth in the network

F1 Scores Expected layer & center-of-gravity

=0 =24 0 2 4 6 8 10 12 14 16

POS 885 96.7 m
Consts. 73.6 87.0 m
Deps. 856 95.5 5.69
Entities 906 96.1 | 4.64 | NNRER)
SRL 81.3 914 m

Coref. 80.5 91.9 9.47m
SPR 77.7 83.7 'Y%)12.72
Relations 60.7 84.2 9.4om
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https://aclanthology.org/P19-1452.pdf

Attention is not explanation (Jain et al., 2019)

Does attention weights provide meaningful “explanations" for predictions?

We find that they largely do not.

e learned attention weights are frequently uncorrelated with gradient-based

measures of feature importance

e one can identify very different attention distributions that nonetheless yield

equivalent predictions

Figure 1: Heatmap of attention weights induced over
a negative movie review. We show observed model at-
tention (left) and an adversarially constructed set of at-
tention weights (right). Despite being quite dissimilar,
these both yield effectively the same prediction (0.01).

after 15 minutes watching the
movie i was asking myself what to
do leave the theater sleep or try
to keep watching the movie to
see if there was anything worth i
finally watched the movie what a
waste of time maybe i am not a 5
years old kid anymore

original

f(z|a, ) = 0.01

after 15 minutes watching the
movie i was asking myself what to
do leave the theater sleep or try
to keep watching the movie to
see if there was anything worth i
finally watched the movie what a
waste of time maybe i am not a 5
years old kid anymore

adversarial &

f(z|&,8) = 0.01
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https://arxiv.org/abs/1902.10186
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Probing

Labels

Binary classifiers

Span
representations

Contextual
vectors

[ Pre-trained encoder ]
.""'i""‘. F""i""‘. ."'""‘t’ """" ' F"'"i""‘. v"“"i""? !
: | i1 eat i i strawberry i ice | ! cream i | Inputtokens

Figure 1: Probing model architecture (§ . All parameters inside the dashed line are fixed, while
we train the span pooling and MLP classifiers to extract information from the contextual vectors.
The example shown is for semantic role labeling, where s(1) = [1,2) corresponds to the predicate
(“eat”), while s(?) = [2,5) is the argument (“strawberry ice cream”), and we predict label A1 as
positive and others as negative. For entity and constituent labeling, only a single span is used.
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Probing: Supervised Analysis of Neural Networks

Linguistic Knowledge and Transferability of Contextual Representations (Liu et al., 2019)

A probe, i.e. a classifier trained to predict the property from the representations.
NNP NNP VBZ NNP

Predicted Labels
(e.g., POS tags)

Probing Model

Contextual Word
Representations

Pretrained Contextualizer

f f f f

Input Tokens Ms. Haag plays Elianti

Figure 1: An illustration of the probing model setup
used to study the linguistic knowledge within contex-

tual word representations. "


https://arxiv.org/pdf/1903.08855.pdf

Probing: Supervised Analysis of Neural Networks

Linguistic Knowledge and Transferability of Contextual Representations (Liu et al., 2019)

POS Supersense ID
Avg. CCG PTB EWT Chunk NER ST GED PS-Role PS-Fxn EF

ELMo (original) best layer 81.58 93.31 97.26 95.61 90.04 82.85 93.82 29.37 7544  84.87 73.20
ELMo (4-layer) best layer 81.58 93.81 97.31 95.60 89.78 82.06 94.18 29.24 74.78 8596 73.03
ELMo (transformer) best layer 80.97 92.68 97.09 95.13 93.06 81.21 93.78 30.80 72.81 82.24 70.88
OpenAl transformer best layer 75.01 82.69 93.82 91.28 86.06 58.14 87.81 33.10 6623 7697 74.03
BERT (base, cased) best layer 84.09 93.67 96.95 9521 92.64 82.71 93.72 4330 79.61 87.94 75.11
BERT (large, cased) best layer 85.07 94.28 96.73 95.80 93.64 84.44 93.83 4646 79.17 90.13 76.25

GloVe (840B.300d) 59.94 71.58 90.49 8393 6228 5322 80.92 14.94 40.79 51.54 49.70

Pretrained Representation

Previous state of the art

. .. 8344 947 9796 95.82 9577 9138 95.15 39.83 6689 7829 77.10
(without pretraining)

Table 1: Performance of the best layerwise linear probing model for each contextualizer compared against a
GloVe-based linear probing baseline and the previous state of the art. The best contextualizer for each task is
bolded. Results for all layers on all tasks, and papers describing the prior state of the art, are given in Appendix D.


https://arxiv.org/pdf/1903.08855.pdf

Probing: Supervised Analysis of Neural Networks

Linguistic Knowledge and Transferability of Contextual Representations (Liu et al., 2019)

(f) BERT (large, cased)
Layer O
Layer 24 ___ S S N s B e B
.
Lower Performance Higher Performance

Figure 3: A visualization of layerwise patterns in task
performance. Each column represents a probing task,
and each row represents a contextualizer layer.


https://arxiv.org/pdf/1903.08855.pdf

Analysis on BERT with probing

BERT Rediscovers the Classical NLP Pipeline (Tenney et al., 2019)

Quantify where linguistic
information is captured within the
network.

Find that the model represents
the steps of the traditional NLP
pipeline in an interpretable and
localizable way, and that the
regions responsible for each step
appear in the expected
sequence: POS tagging, parsing,
NER, semantic roles, then
coreference

Increasing
abstractness
of linguistic
properties

Increasing depth in the network

F1 Scores

Expected layer & center-of-gravity

=0 =24 0 2 4 6 8 10 12 14 16

POS 885
Consts. 73.6
Deps. 85.6
Entities 90.6
SRL 813
Coref. 80.5
SPR 77.7
Relations 60.7

96.7
87.0
95.5
96.1
91.4
91.9
83.7
84.2

leo o Jovan Jonna o an o sl v feaneforanls

5.69
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o
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9.93

9.40 m
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https://aclanthology.org/P19-1452.pdf

Structural Probing

A Structural Probe for Finding Syntax in Word Representations (Hewiit et al., 2019):
BERT representations can be transformed using a matrix to encode distance in

dependency parse trees.

— \\/ 23S
chef ===
The ke O
who to of
store food
the
dpath (chef, was) = 1
dpath (wy,wy)

out
store
the ;
'y ;hef # food
ran /. 7/
5L 1B rener — a1 = 1
who /
/ was
Thé

||B(hw1 - hwz)”%

Tree path distance: the number of edgesin  Squared Euclidean distance of BERT vectors

the path between the words

after transformation by the (probe) matrix B.
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https://nlp.stanford.edu/pubs/hewitt2019structural.pdf

Structural Probing

A Structural Probe for Finding Syntax in Word Representations (Hewiit et al., 2019):
BERT representations can be transformed using a matrix to encode distance in

dependency parse trees.

out
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Thé
dpath (W1, W7) ||B(hw1 - hwz)”%
Tree path distance: the number of edgesin  Squared Euclidean distance of BERT vectors
the path between the words after transformation by the (probe) matrix B.
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https://nlp.stanford.edu/pubs/hewitt2019structural.pdf

Probes have achieved high accuracy on
linguistic tasks.

But does this mean that the representations
encode linguistic structure or just that the probe
has learned the linguistic task?

We propose control tasks, which associate word
types with random outputs, to complement
linguistic tasks.

So a good probe, (one that reflects the
representation), should be selective, achieving
high linguistic task accuracy and low control
task accuracy.

We show that popular probes on ELMo
representations are not selective.

A good probing classifier should not be too strong

Designing and Interpreting Probes with Control Tasks (Hewitt et al., 2019)

Control I 3' 10ran 15uickl
Task 9 y

after  The do
Vocab 42 ¥ & 5

Sentence 1  The cat ran quickly
Part-of-speech DT NN VBD RB
Controltask 10 37 10 15

Sentence 2  The dog ran  after !
Part-of-speech DT NN VBD IN
Controltask 10 15 10

Figure 1: Our control tasks define random behavior (like
a random output, top) for each word type in the vocabulary.
Each word token is assigned its type’s output, regardless of
context (middle, bottom.) Control tasks have the same input
and output space as a linguistic task (e.g., parts-of-speech) but
can only be learned if the probe memorizes the mapping.


https://arxiv.org/pdf/1909.03368.pdf
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Knowledge Neurons in Pretrained Transformers (Dai et al., 2021)

————— e
S Knowledge -
o Attribution /!
Feed-Forward Iy
Network
. Knowledge
Hidden State Neurons

Self-Attention Layer

X

Figure 1: Through knowledge attribution, we identify
knowledge neurons that express a relational fact.
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https://arxiv.org/abs/2104.08696
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Saliency Map

"Explanation by Input Features"

A sometimes tedious film.

l Classifier

Prediction: positive sentiment

Saliency maps

A sometimes tedious film
+0.07 +0.20 -0.45 -0.03

Salient tokens in the input

30



Gradient-based Saliency Map (Simonyan et al., 2014)

e The gradient of the loss L is computed with respect to each token t in the input text, and the
magnitude of the gradient serves as a feature importance score

e They tell us how much the loss would change, were we to perturb a token by a small amount

e ‘“gradient x input”

X2t p(Y[x)
X\ —Ve(t) Eﬁ ) €(t)

https://arxiv.org/pdf/2005.06676.pdf

:Xl

Interpreting Predictions of NLP Models, EMNLP 2020 Tutorial [slides] 31


https://arxiv.org/abs/1312.6034
https://github.com/Eric-Wallace/interpretability-tutorial-emnlp2020/

SmoothGrad (Smilkov et al., 2017)

add gaussian noise to input and average the gradient

p(y|X)

X2‘

Interpreting Predictions of NLP Models, EMNLP 2020 Tutorial [slides]
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https://arxiv.org/abs/1706.03825
https://github.com/Eric-Wallace/interpretability-tutorial-emnlp2020/
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Influential Training Examples

A sometimes tedious film.

l Classifier
Prediction: positive sentiment
Saliency maps

A sometimes tedious film
+0.07 +0.20 -045 -0.03

Salient tokens in the input

Influence functions

Credulous. positive +10.32
An admittedly middling film. positive +10.09
A simplistic narrative. positive ~ +9.58

Tedious Norwegian offering which

somehow snagged an oscar nomination. negative -9.64
Visually flashy but narratively opaque. negative  -11.01
Full of cheesy dialogue. negative  -12.78

Influential examples in the training corpus

Figure 1: A sentiment analysis example interpreted by gradient-based saliency maps (left) and influence functions
(right). Note that this example is classified incorrectly by the model. Positive saliency tokens and highly influential
examples may suggest why the model makes the wrong decision; tokens and examples with negative saliency or
influence scores may decrease the model’s confidence in making that decision.
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Influence Functions (Koh and Liang, 2017)

e (oal: for a given test prediction, identify the most influential training
points

e Consider , and training point z:

I(x, z) = How important is z for model’s prediction for
In other words, what is the influence of 7 on the prediction for »?

1. “Remove” the training point z = change in parameters

2. Change in parameters = change in test prediction on input

Interpreting Predictions of NLP Models, EMNLP 2020 Tutorial [slides] 36


https://arxiv.org/abs/1703.04730
https://github.com/Eric-Wallace/interpretability-tutorial-emnlp2020/

Training data z,, 25, ..., Z,,

Pick O to minimize %Z?ﬂ L(z;,0)

((Dog

D)

Slide: Pang Wei Koh
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Training data z,, z,, ..., Z,,

Pick & to minimize %Z?ﬂ L(z;,0)

”»

CCDog

D)
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Training data z,, z,, ...,

Zn

Pick H_Zt _to minimize

ZL(zu ) ~ - L(ztrains 6)

((Dog”

]

~Ztrain
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“Dog” (82% confidence)

i -
\

“Dog” (79% confidence)

9_2 train
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“Dog” (82% confidence) “Dog” (79% confidence)

% vs.
0 0‘2 train

; ; What iS L(Ztest: é—ztrain) S L(Ztest» é)?
%
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Influence Functions in Deep Learning Are Fragile (Basu et al., 2021)

With Weight-Decay Without Weight-Decay Correlation Decreases With Depth Correlation Decreases With Width
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Figure 1: Iris dataset experimental results - (a,b) Comparison of norm of parameter changes com-
puted with influence function vs re-training; (a) trained with weight-decay; (b) trained without
weight-decay. (c) Spearman correlation vs. network depth. (d) Spearman correlation vs. network
width.
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WT57?! Training Text-to-Text Models to Explain their
Predictions (Narang et al., 2020)

movie with my husband, and we both
thought the acting was terrible!"

"sentiment: Despite what others say,
I thought this movie was funny." 5

[ "explain nli premise: Cardinals

"explain sentiment: I went to see this
"negative explanation:
the acting was terrible."

"positive"

"contradiction
explanation: you can't

lose if you always win."

lost last night. hypothesis: The
Saint Louis Cardinals always win."

Figure 2: Diagram of our method for training a text-to-text model to explain its predictions. We train the
model to generate an explanation when the text “explain” is prepended to the input. The model can still be
trained for classification (without an explanation) simply by omitting the “explain” keyword. This approach
is readily applicable to sentiment analysis, natural language inference (NLI), and other text tasks.

44


https://arxiv.org/abs/2004.14546

WT57?! Training Text-to-Text Models to Explain their
Predictions (Narang et al., 2020)

Neural .
- O network O WTS5 (this work)
(@] O Human
©
=
(@)
(&)
<C o Rule-based
system

\ /

Interpretability

Figure 1: Tllustration of our perspective on the accu-
racy and interpretability of different models. Neural
networks (blue) can attain superhuman performance,
but are notoriously hard to interpret. A rule-based
system (yellow) is easy to interpret but rarely performs
well on difficult tasks. Humans (red) are reasonably
accurate and provide some degree of interpretability
by being able to verbally explain their predictions. In
this work, our model (green) is trained both to be
highly accurate (in some cases, more accurate than a
human) and provide explanations for its predictions
as humans do.
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